運算放大器

運算放大器

運算放大器(常簡稱為“運放”)是具有很高放大倍數的電路單元。在實際電路中,通常結合反饋網路共同組成某種功能模組。由於早期套用於模擬計算機中,用以實現數學運算,故得名“運算放大器”,此名稱一直延續至今。運放是一個從功能的角度命名的電路單元,可以由分立的器件實現,也可以實現在半導體晶片當中。隨著半導體技術的發展,如今絕大部分的運放是以單片的形式存在。運放的種類繁多,廣泛套用於幾乎所有的行業當中。實際運算放大器的增益是有限值,而且隨頻率的升高而降低;其輸入阻抗不是無窮大,輸出阻抗也不等於零。

基本信息

發展史

第一個使用真空管設計的放大器大約在1930年前後完成,這個放大器可以執行加與減的工作。

運算放大器最早被設計出來的目的是將電壓類比成數字,用來進行加、減、乘、除的運算,同時也成為實現模擬計算機(analog computer)的基本建構方塊。然而,理想運算放大器的在電路系統設計上的用途卻遠超過加減乘除的計算。今日的運算放大器,無論是使用電晶體(transistor)或真空管(vacuum tube)、分立式(discrete)元件或積體電路(integrated circuits)元件,運算放大器的效能都已經逐漸接近理想運算放大器的要求。早期的運算放大器是使用真空管設計,當前則多半是積體電路式的元件。但是如果系統對於放大器的需求超出積體電路放大器的需求時,常常會利用分立式元件來實現這些特殊規格的運算放大器。

1960年代晚期,仙童半導體(Fairchild Semiconductor)推出了第一個被廣泛使用的積體電路運算放大器,型號為μA709,設計者則是鮑伯·韋勒(Bob Widlar)。但是709很快地被隨後而來的新產品μA741取代,741有著更好的性能,更為穩定,也更容易使用。741運算放大器成了微電子工業發展歷史上一個獨一無二的象徵,歷經了數十年的演進仍然沒有被取代,很多積體電路的製造商至今仍然在生產741。直到今天μA741仍然是各大學電子工程系中講解運放原理的典型教材。

原理

運放如圖有兩個輸入端a(反相輸入端),b(同相輸入端)和一個輸出端o。也分別被稱為倒向輸入端非倒向輸入端和輸出端。當電壓U-加在a端和公共端(公共端是電壓為零的點,它相當於電路中的參考結點。)之間,且其實際方向從a 端高於公共端時,輸出電壓U實際方向則自公共端指向o端,即兩者的方向正好相反。當輸入電壓U+加在b端和公共端之間,U與U+兩者的實際方向相對公共端恰好相同。為了區別起見,a端和b 端分別用"-"和"+"號標出,但不要將它們誤認為電壓參考方向的正負極性。電壓的正負極性應另外標出或用箭頭表示。反轉放大器和非反轉放大器如下圖:

運算放大器運算放大器
運算放大器運算放大器

一般可將運放簡單地視為:具有一個信號輸出連線埠(Out)和同相、反相兩個高阻抗輸入端的高增益直接耦合電壓放大單元,因此可採用運放製作同相、反相及差分放大器。

運放的供電方式分雙電源供電與單電源供電兩種。對於雙電源供電運放,其輸出可在零電壓兩側變化,在差動輸入電壓為零時輸出也可置零。採用單電源供電的運放,輸出在電源與地之間的某一範圍變化。

運放的輸入電位通常要求高於負電源某一數值,而低於正電源某一數值。經過特殊設計的運放可以允許輸入電位在從負電源到正電源的整個區間變化,甚至稍微高於正電源或稍微低於負電源也被允許。這種運放稱為軌到軌(rail-to-rail)輸入運算放大器。

運算放大器的輸出信號與兩個輸入端的信號電壓差成正比,在音頻段有:輸出電壓=A0(E1-E2),其中,A0 是運放的低頻開環增益(如 100dB,即 100000 倍),E1 是同相端的輸入信號電壓,E2 是反相端的輸入信號電壓。

簡介

運算放大器運算放大器

能對信號進行數學運算的放大電路。它曾是模擬計算機的基礎部件,因而得名。採用積體電路工藝製做的運算放大器,除保持了原有的很高的增益和輸入阻抗的特點之外,還具有精巧、廉價和可靈活使用等優點,因而在有源濾波器

、開關電容電路

、數-模和模-數轉換器

、直流信號放大、波形的產生和變換,以及信號處理等方面得到十分廣泛的套用。

直流放大電路在工業技術領域中,特別是在一些測量儀器和自動化控制系統中套用非常廣泛。如在一些自動控制系統中,首先要把被控制的非電量(如溫度、轉速、壓力、流量、照度等)用感測器轉換為電信號,再與給定量比較,得到一個微弱的偏差信號。因為這個微弱的偏差信號的幅度和功率均不足以推動顯示或者執行機構,所以需要把這個偏差信號放大到需要的程度,再去推動執行機構或送到儀表中去顯示,從而達到自動控制和測量的目的。因為被放大的信號多數變化比較緩慢的直流信號,分析交流信號放大的放大器由於存在電容器這樣的元件,不能有效地耦合這樣的信號,所以也就不能實現對這樣信號的放大。能夠有效地放大緩慢變化的直流信號的最常用的器件是運算放大器。運算放大器最早被發明作為模擬信號的運算(實現加減乘除比例微分積分等)單元,是模擬電子計算機的基本組成部件,由真空電子管組成。所用的運算放大器,是把多個電晶體組成的直接耦合的具有高放大倍數的電路,集成在一塊微小的矽片上。

第一塊集成運放電路是美國仙童(fairchild)公司發明的μA741,在60年代後期廣泛流行。直到今天μA741仍然是各大學電子工程系中講解運放原理的典型教材。

分類

按照集成運算放大器的參數來分,集成運算放大器可分為如下幾類。

通用型

運算放大器運算放大器

通用型運算放大器就是以通用為目的而設計的。這類器件的主要特點是價格低廉、產品量大面廣,其性能指標能適合於一般性使用。例μA741(單運放)、LM358(雙運放)、LM324(四運放)及以場效應管為輸入級的LF356都屬於此種。它們是目前套用最為廣泛的集成運算放大器。

高阻型

這類集成運算放大器的特點是差模輸入阻抗非常高,輸入偏置電流非常小,一般rid>1GΩ~1TΩ,IB為幾皮安到幾十皮安。實現這些指標的主要措施是利用場效應管高輸入阻抗的特點,用場效應管組成運算放大器的差分輸入級。用FET作輸入級,不僅輸入阻抗高,輸入偏置電流低,而且具有高速、寬頻和低噪聲等優點,但輸入失調電壓較大。常見的集成器件有LF355、LF347(四運放)及更高輸入阻抗的CA3130、CA3140等。

低溫漂型

在精密儀器、弱信號檢測等自動控制儀表中,總是希望運算放大器的失調電壓要小且不隨溫度的變化而變化。低溫漂型運算放大器就是為此而設計的。當前常用的高精度、低溫漂運算放大器有OP07、OP27、AD508及由MOSFET組成的斬波穩零型低漂移器件ICL7650等。

高速型

在快速A/D和D/A轉換器、視頻放大器中,要求集成運算放大器的轉換速率SR一定要高,單位增益頻寬BWG一定要足夠大,像通用型集成運放是不能適合於高速套用的場合的。高速型運算放大器主要特點是具有高的轉換速率和寬的頻率回響。常見的運放有LM318、μA715等,其SR=50~70V/us,BWG>20MHz。

低功耗型

運算放大器運算放大器

由於電子電路集成化的最大優點是能使複雜電路小型輕便,所以隨著攜帶型儀器套用範圍的擴大,必須使用低電源電壓供電、低功率消耗的運算放大器相適用。常用的運算放大器有TL-022C、TL-060C等,其工作電壓為±2V~±18V,消耗電流為50~250μA。目前有的產品功耗已達μW級,例如ICL7600的供電電源為1.5V,功耗為10mW,可採用單節電池供電。

高壓大功率型

運算放大器的輸出電壓主要受供電電源的限制。在普通的運算放大器中,輸出電壓的最大值一般僅幾十伏,輸出電流僅幾十毫安。若要提高輸出電壓或增大輸出電流,集成運放外部必須要加輔助電路。高壓大電流集成運算放大器外部不需附加任何電路,即可輸出高電壓和大電流。例如D41集成運放的電源電壓可達±150V,μA791集成運放的輸出電流可達1A。

可程式控制型

在儀器儀表得使用過程中都會涉及到量程得問題.為了得到固定電壓得輸出,就必須改變運算放大器得放大倍數.例如:有一運算放大器得放大倍數為10倍,輸入信號為1mv時,輸出電壓為10mv,當輸入電壓為0.1mv時,輸出就只有1mv,為了得到10mv就必須改變放大倍數為100。程控運放就是為了解決這一問題而產生的。例如PGA103A,通過控制1,2腳的電平來改變放大的倍數。

使用說明

正確選擇集成運算放大器

集成運算放大器是模擬積體電路中套用最廣泛的一種器件。在由運算放大器組成的各種系統中,由於套用要求不一樣,對運算放大器的性能要求也不一樣。

在沒有特殊要求的場合,儘量選用通用型集成運放,這樣既可降低成本,又容易保證貨源。當一個系統中使用多個運放時,儘可能選用多運放積體電路,例如LM324、LF347等都是將四個運放封裝在一起的積體電路。

評價集成運放性能的優劣,應看其綜合性能。一般用優值係數K來衡量集成運放的優良程度,其定義為:式中,SR為轉換率,單位為V/ms,其值越大,表明運放的交流特性越好;Iib為運放的輸入偏置電流,單位是nA;VOS為輸入失調電壓,單位是mV。Iib和VOS值越小,表明運放的直流特性越好。所以,對於放大音頻、視頻等交流信號的電路,選SR(轉換速率)大的運放比較合適;對於處理微弱的直流信號的電路,選用精度比較的高的運放比較合適(既失調電流、失調電壓及溫飄均比較小)。

實際選擇集成運放時,除優值係數要考慮之外,還應考慮其他因素。例如信號源的性質,是電壓源還是電流源;負載的性質,集成運放輸出電壓和電流的是否滿足要求;環境條件,集成運放允許工作範圍、工作電壓範圍、功耗與體積等因素是否滿足要求。

使用要點

1.集成運放的電源供給方式

集成運放有兩個電源接線端+VCC和-VEE,但有不同的電源供給方式。對於不同的電源供給方式,對輸入信號的要求是不同的。

(1)對稱雙電源供電方式

運算放大器多採用這種方式供電。相對於公共端(地)的正電源(+E)與負電源(-E)分別接於運放的+VCC和-VEE管腳上。在這種方式下,可把信號源直接接到運放的輸入腳上,而輸出電壓的振幅可達正負對稱電源電壓。

(2)單電源供電方式

單電源供電是將運放的-VEE管腳連線到地上。此時為了保證運放內部單元電路具有合適的靜態工作點,在運放輸入端一定要加入一直流電位,如圖3.2.1所示。此時運放的輸出是在某一直流電位基礎上隨輸入信號變化。對於圖3.2.1交流放大器,靜態時,運算放大器的輸出電壓近似為VCC/2,為了隔離掉輸出中的直流成分接入電容C3。

圖3.2.1 運算放大器單電源供電電路

2.集成運放的調零問題

由於集成運放的輸入失調電壓和輸入失調電流的影響,當運算放大器組成的線性電路輸入信號為零時,輸出往往不等於零。為了提高電路的運算精度,要求對失調電壓和失調電流造成的誤差進行補償,這就是運算放大器的調零。常用的調零方法有內部調零和外部調零,而對於沒有內部調零端子的集成運放,要採用外部調零方法。下面以mA741為例,圖3.2.2給出了常用調零電路。圖3.2.2(a)所示的是內部調零電路;圖(b)是外部調零電路。

3.集成運放的自激振盪問題

運算放大器是一個高放大倍數的多級放大器,在接成深度負反饋條件下,很容易產生自激振盪。為使放大器能穩定的工作,就需外加一定的頻率補償網路,以消除自激振盪。圖3.2.3是相位補償的使用電路。

圖3.2.2 運算放大器的常用調零電路 圖3.2.3 運算放大器的自激消除

另外,防止通過電源內阻造成低頻振盪或高頻振盪的措施是在集成運放的正、負供電電源的輸入端對地一定要分別加入一電解電容(10mF)和一高頻濾波電容(0.01mF~0.1mF)。如圖3.2.3所示。

4.集成運放的保護問題

集成運放的安全保護有三個方面:電源保護、輸入保護和輸出保護。

(1)電源保護。電源的常見故障是電源極性接反和電壓跳變。電源反接保護和電源電壓突變保護電路見圖 3.2.4(a)、(b)所示。對於性能較差的電源,在電源接通和斷開瞬間,往往出現電壓過沖。圖(b)中採用FET電流源和穩壓管鉗位保護,穩壓管的穩壓值大於集成運放的正常工作電壓而小於集成運放的最大允許工作電壓。FET管的電流應大於集成運放的正常工作電流。

(2)輸入保護。集成運放的輸入差模電壓過高或者輸入共模電壓過高(超出該集成運放的極限參數範圍),集成運放也會損壞。圖3.2.5 所示是典型的輸入保護電路。

圖3.2.4 集成運放電源保護電路 圖3.2.5 集成運放輸入保護電路

(3)輸出保護。當集成運放過載或輸出端短路時,若沒有保護電路,該運放就會損壞。但有些集成運放內部設定了限流保護或短路保護,使用這些器件就不需再加輸出保護。對於內部沒有限流或短路保護的集成運放,可以採用圖3.2.6所示的輸出保護電路。在圖3.2.6電路中,當輸出保護時,由電阻R起限流保護作用。

圖3.2.6 集成運放輸出保護電路

參數

共模輸入電阻

該參數表示運算放大器工作線上性區時,輸入共模電壓範圍與該範圍內偏置電流的變化量之比。

直流共模抑制

該參數用於衡量運算放大器對作用在兩個輸入端的相同直流信號的抑制能力。

交流共模抑制

CMRAC用於衡量運算放大器對作用在兩個輸入端的相同交流信號的抑制能力,是差模開環增益除以共模開環增益的函式。

增益頻寬積

增益頻寬積是一個常量,定義在開環增益隨頻率變化的特性曲線中以-20dB/十倍頻程滾降的區域。

輸入偏置電流

該參數指運算放大器工作線上性區時流入輸入端的平均電流。

偏置電流溫漂

該參數代表輸入偏置電流在溫度變化時產生的變化量。TCIB通常以pA/°C為單位表示。

輸入失調電流

該參數是指流入兩個輸入端的電流之差。

輸入失調電流溫漂(TCIOS)

該參數代表輸入失調電流在溫度變化時產生的變化量。TCIOS通常以pA/°C為單位表示。

差模輸入電阻

該參數表示輸入電壓的變化量與相應的輸入電流變化量之比,電壓的變化導致電流的變化。在一個輸入端測量時,另一輸入端接固定的共模電壓。

輸出阻抗

該參數是指運算放大器工作線上性區時,輸出端的內部等效小信號阻抗。

輸出電壓擺幅

該參數是指輸出信號不發生箝位的條件下能夠達到的最大電壓擺幅的峰峰值,VO一般定義在特定的負載電阻和電源電壓下。

功耗

運算放大器運算放大器

表示器件在給定電源電壓下所消耗的靜態功率,Pd通常定義在空載情況下。

電源抑制比

該參數用來衡量在電源電壓變化時運算放大器保持其輸出不變的能力,PSRR通常用電源電壓變化時所導致的輸入失調電壓的變化量表示。

轉換速率

該參數是指輸出電壓的變化量與發生這個變化所需時間之比的最大值。SR通常以V/µs為單位表示,有時也分別表示成正向變化和負向變化。

電源電流

該參數是在指定電源電壓下器件消耗的靜態電流,這些參數通常定義在空載情況下。

單位增益頻寬

該參數指開環增益大於1時運算放大器的最大工作頻率。

輸入失調電壓

該參數表示使輸出電壓為零時需要在輸入端作用的電壓差。

輸入失調電壓溫漂(TCVOS)

該參數指溫度變化引起的輸入失調電壓的變化,通常以µV/°C為單位表示。

輸入電容

CIN表示運算放大器工作線上性區時任何一個輸入端的等效電容(另一輸入端接地)。

輸入電壓範圍

該參數指運算放大器正常工作(可獲得預期結果)時,所允許的輸入電壓的範圍,VIN通常定義在指定的電源電壓下。

輸入電壓噪聲密度(eN)

對於運算放大器,輸入電壓噪聲可以看作是連線到任意一個輸入端的串聯噪聲電壓源,eN通常以 nV / 根號Hz 為單位表示,定義在指定頻率。

輸入電流噪聲密度(iN)

對於運算放大器,輸入電流噪聲可以看作是兩個噪聲電流源,連線到每個輸入端和公共端,通常以 pA / 根號Hz 為單位表示,定義在指定頻率。

理想運算放大器參數:差模放大倍數、差模輸入電阻、共模抑制比、上限頻率均無窮大;輸入失調電壓及其溫漂、輸入失調電流及其溫漂,以及噪聲均為零。

套用

運算放大器是用途廣泛的器件,接入適當的反饋網路,可用作精密的交流和直流放大器、有源濾波器、振盪器及電壓比較器。

測量

圖1圖1
圖2圖2
圖3圖3
圖4圖4
圖5圖5
圖6圖6
圖7圖7
圖8圖8

運算放大器是差分輸入、單端輸出的極高增益放大器,常用於高精度模擬電路,因此必須精確測量其性能。但在開環測量中,其開環增益可能高達107或更高,而拾取、雜散電流或塞貝克(熱電偶)效應可能會在放大器輸入端產生非常小的電壓,這樣誤差將難以避免。

通過使用伺服環路,可以大大簡化測量過程,強制放大器輸入調零,使得待測放大器能夠測量自身的誤差。圖1顯示了一個運用該原理的多功能電路,它利用一個輔助運放作為積分器,來建立一個具有極高直流開環增益的穩定環路。開關為執行下面所述的各種測試提供了便利。

圖1所示電路能夠將大部分測量誤差降至最低,支持精確測量大量直流和少量交流參數。附加的“輔助”運算放大器無需具有比待測運算放大器更好的性能,其直流開環增益最好能達到106或更高。如果待測器件(DUT)的失調電壓可能超過幾mV,則輔助運放應採用±15V電源供電(如果DUT的輸入失調電壓可能超過10mV,則需要減小99.9kΩ電阻R3的阻值。)

DUT的電源電壓+V和–V幅度相等、極性相反。總電源電壓理所當然是2×V。該電路使用對稱電源,即使“單電源”運放也是如此,因為系統的地以電源的中間電壓為參考。

作為積分器的輔助放大器在直流時配置為開環(最高增益),但其輸入電阻和反饋電容將其頻寬限制為幾Hz。這意味著,DUT輸出端的直流電壓被輔助放大器以最高增益放大,並通過一個1000:1衰減器施加於DUT的同相輸入端。負反饋將DUT輸出驅動至地電位。(事實上,實際電壓是輔助放大器的失調電壓,更精確地說是該失調電壓加上輔助放大器的偏置電流在100kΩ電阻上引起的壓降,但它非常接近地電位,因此無關緊要,特別是考慮到測量期間此點的電壓變化不大可能超過幾mV)。

測試點TP1上的電壓是施加於DUT輸入端的校正電壓(與誤差在幅度上相等)的1000倍,約為數十mV或更大,因此可以相當輕鬆地進行測量。

理想運算放大器的失調電壓(Vos)為0,即當兩個輸入端連在一起並保持中間電源電壓時,輸出電壓同樣為中間電源電壓。現實中的運算放大器則具有幾微伏到幾毫伏不等的失調電壓,因此必須將此範圍內的電壓施加於輸入端,使輸出處於中間電位。

圖2給出了最基本測試——失調電壓測量的配置。當TP1上的電壓為DUT失調電壓的1000倍時,DUT輸出電壓處於地電位。

理想運算放大器具有無限大的輸入阻抗,無電流流入其輸入端。但在現實中,會有少量“偏置”電流流入反相和同相輸入端(分別為Ib–和Ib+),它們會在高阻抗電路中引起顯著的失調電壓。根據運算放大器類型的不同,這種偏置電流可能為幾fA(1fA=10–15A,每隔幾微秒流過一個電子)至幾nA;在某些超快速運算放大器中,甚至達到1-2μA。圖3顯示如何測量這些電流。

該電路與圖2的失調電壓電路基本相同,只是DUT輸入端增加了兩個串聯電阻R6和R7。這些電阻可以通過開關S1和S2短路。當兩個開關均閉合時,該電路與圖2完全相同。當S1斷開時,反相輸入端的偏置電流流入Rs,電壓差增加到失調電壓上。通過測量TP1的電壓變化(=1000Ib–×Rs),可以計算出Ib–。同樣,當S1閉合且S2斷開時,可以測量Ib+。如果先在S1和S2均閉合時測量TP1的電壓,然後在S1和S2均斷開時再次測量TP1的電壓,則通過該電壓的變化可以測算出“輸入失調電流”Ios,即Ib+與Ib–之差。R6和R7的阻值取決於要測量的電流大小。

如果Ib的值在5pA左右,則會用到大電阻,使用該電路將非常困難,可能需要使用其它技術,牽涉到Ib給低泄漏電容(用於代替Rs)充電的速率。

當S1和S2閉合時,Ios仍會流入100Ω電阻,導致Vos誤差,但在計算時通常可以忽略它,除非Ios足夠大,產生的誤差大於實測Vos的1%。

運算放大器的開環直流增益可能非常高,107以上的增益也並非罕見,但250,000到2,000,000的增益更為常見。直流增益的測量方法是通過S6切換DUT輸出端與1V基準電壓之間的R5,迫使DUT的輸出改變一定的量(圖4中為1V,但如果器件採用足夠大的電源供電,可以規定為10V)。如果R5處於+1V,若要使輔助放大器的輸入保持在0附近不變,DUT輸出必須變為–1V。

TP1的電壓變化衰減1000:1後輸入DUT,導致輸出改變1V,由此很容易計算增益(=1000×1V/TP1)。

為了測量開環交流增益,需要在DUT輸入端注入一個所需頻率的小交流信號,並測量相應的輸出信號(圖5中的TP2)。完成後,輔助放大器繼續使DUT輸出端的平均直流電平保持穩定。

圖5中,交流信號通過10,000:1的衰減器施加於DUT輸入端。對於開環增益可能接近直流值的低頻測量,必須使用如此大的衰減值。(例如,在增益為1,000,000的頻率時,1Vrms信號會將100μV施加於放大器輸入端,放大器則試圖提供100Vrms輸出,導致放大器飽和。)因此,交流測量的頻率一般是幾百Hz到開環增益降至1時的頻率;在需要低頻增益數據時,應非常小心地利用較低的輸入幅度進行測量。所示的簡單衰減器只能在100kHz以下的頻率工作,即使小心處理了雜散電容也不能超過該頻率。如果涉及到更高的頻率,則需要使用更複雜的電路。

運算放大器的共模抑制比(CMRR)指共模電壓變化導致的失調電壓視在變化與所施加的共模電壓變化之比。在DC時,它一般在80dB至120dB之間,但在高頻時會降低。

測試電路非常適合測量CMRR(圖6)。它不是將共模電壓施加於DUT輸入端,以免低電平效應破壞測量,而是改變電源電壓(相對於輸入的同一方向,即共模方向),電路其餘部分則保持不變。

在圖6所示電路中,在TP1測量失調電壓,電源電壓為±V(本例中為+2.5V和–2.5V),並且兩個電源電壓再次上移+1V(至+3.5V和–1.5V)。失調電壓的變化對應於1V的共模電壓變化,因此直流CMRR為失調電壓與1V之比。

CMRR衡量失調電壓相對於共模電壓的變化,總電源電壓則保持不變。電源抑制比(PSRR)則相反,它是指失調電壓的變化與總電源電壓的變化之比,共模電壓保持中間電源電壓不變(圖7)。

所用的電路完全相同,不同之處在於總電源電壓發生改變,而共模電平保持不變。本例中,電源電壓從+2.5V和–2.5V切換到+3V和–3V,總電源電壓從5V變到6V。共模電壓仍然保持中間電源電壓。計算方法也相同(1000×TP1/1V)。

為了測量交流CMRR和PSRR,需要用電壓來調製電源電壓,如圖8所示。DUT繼續在直流開環下工作,但確切的增益由交流負反饋決定(圖中為100倍)。

為了測量交流CMRR,利用幅度為1V峰值的交流電壓調製DUT的正負電源。兩個電源的調製同相,因此實際的電源電壓為穩定的直流電壓,但共模電壓是2V峰峰值的正弦波,導致DUT輸出包括一個在TP2測量的交流電壓。

如果TP2的交流電壓具有xV峰值的幅度(2xV峰峰值),則折合到DUT輸入端(即放大100倍交流增益之前)的CMRR為x/100V,並且CMRR為該值與1V峰值的比值。

交流PSRR的測量方法是將交流電壓施加於相位相差180°的正負電源,從而調製電源電壓的幅度(本例中同樣是1V峰值、2V峰峰值),而共模電壓仍然保持穩定的直流電壓。計算方法與上一參數的計算方法非常相似。

總結

當然,運算放大器還有許多其它參數可能需要測量,而且還有多種其它方法可以測量上述參數,但正如本文所示,最基本的直流和交流參數可以利用易於構建、易於理解、毫無問題的簡單基本電路進行可靠測量。

相關詞條

相關搜尋

熱門詞條