莫比烏斯圈

麥比烏斯圈(M bius strip, M bius band)是一種單側、不可定向的曲面。因A.F.麥比烏斯(德國數學家,天文學家 )發現而得名。也稱麥比烏斯帶。

概述

一種單側、不可定向的曲面。因A.F.麥比烏斯(August Ferdinand Möbius, 1790-1868)發現而得名。將一個長方形紙條ABCD的一端AB固定,另一端DC扭轉半周后,把 AB和CD粘合在一起 ,得到的曲面就是麥比烏斯圈

由來

數學上流傳著這樣一個故事:有人曾提出,先用一張長方形的紙條,首尾相粘,做成一個紙圈,然後只允許用一種顏色,在紙圈上的一面塗抹,最後把整個紙圈全部抹成一種顏色,不留下任何空白。
你想想,應該怎樣粘這個紙圈?
如果是紙條的首尾相粘做成的紙圈有兩個面,勢必要塗完一個面再重新塗另一個面,不符合塗抹的要求,能不能做成只有一個面、一條封閉曲線做邊界的紙圈兒呢?
對於這樣一個看來十分簡單的問題,數百年間,曾有許多科學家進行了認真研究,結果都沒有成功。
後來,德國數學家麥比烏斯對此發生了濃厚興趣,他長時間專心思索、試驗,也毫無結果。
有一天,他被這個問題弄得頭昏腦漲了,便到野外去散步。新鮮的空氣,清涼的風,使他頓時感到輕鬆舒適,但他頭腦里仍然只有那個尚未找到的圈兒。
一片片肥大的玉米葉子,在他眼裡變成了“綠色的紙條兒”,他不由自主地蹲下去,擺弄著、觀察著。
葉子彎取著聳拉下來,有許多扭成半圓形的,他隨便撕下一片,順著葉子自然扭的方向對接成一個圓圈兒,他驚喜地發現,這“綠色的圓圈兒”就是他夢寐以求的那種圈圈!
麥比烏斯回到辦公室,裁出紙條,把紙的一端扭轉180。,再將兩端粘在一起,這樣就做成了只有一個面的紙圈兒。
圓圈做成後,麥比烏斯捉了一隻小甲蟲,放在上面讓它爬。結果,小甲蟲不翻越任何邊界就爬遍了圓圈兒的所有部分。麥比烏斯圈激動地說:“公正的小甲蟲,你無可辯駁地證明了這個圈兒只有一個面。”
上面說的遊戲,只有把白紙條粘成“麥比烏斯圈”,才能按要求完成。
做幾個簡單的實驗,就會發現“麥比烏斯圈”有許多讓我們驚奇有趣的結果。
如果在裁好的一張紙條正中間畫一條線,粘成“麥比烏斯圈”,再沿線剪開,把這個圈一分為二,照理應得到兩個圈兒,奇怪的是,剪開後竟是一個大圈兒。
如果在紙條上劃兩條線,把紙條三等分,再粘成“麥比烏斯圈”,用剪刀沿畫線剪開,剪刀繞兩個圈竟然又回到原出發點,猜一猜,剪開後的結果是什麼,是一個大圈?還是三個圈兒?都不是。它究竟是什麼呢?你自己動手做這個實驗就知道了。
數學中有一個重要分支叫“拓撲學”,主要是研究幾何圖形連續改變形狀時的一些特徵和規律的,“麥比烏斯圈”變成了拓撲學中最有趣的問題之一。
關於麥比烏斯圈的單側性,可如下直觀地了解,如果給麥比烏斯圈著色,色筆始終沿曲面移動,且不越過它的邊界,最後可把麥比烏斯圈兩面均塗上顏色 ,即區分不出何是正面,何是反面。對圓柱面則不同,在一側著色不通過邊界不可能對另一側也著色。單側性又稱不可定向性。以曲面上除邊緣外的每一點為圓心各畫一個小圓,對每個小圓周指定一個方向,稱為相伴麥比烏斯圈單側曲面圓心點的指向,若能使相鄰兩點相伴的指向相同,則稱曲面可定向,否則稱為不可定向。麥比烏斯圈是不可定向的。

相關詞條

相關搜尋

熱門詞條